

Temporal Logics

Dr. Liam O'Connor CSE, UNSW (for now) Term 1 2020

Define Reach $(A, q) \subseteq Q$ as the set of states reachable in A from q.

Define Reach(A) \equiv Reach(A, q_0).

Exercise

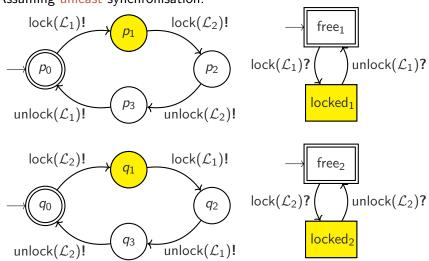
•0000

Describe the algorithm for computing Reach(A).

Deadlock or a stuck state is a state $q \in Q$ which has no outgoing transitions i.e $\forall a. \ \delta(q, a) = \emptyset$.

Deadlock Example

Assuming unicast synchronisation:



Exercise: What is an algorithm to detect deadlock?

Safety Properties

A safety property is an assertion that bad things do not happen. In other words, given some set of states $Bad \subseteq Q$, we want to check that:

$$\mathsf{Bad} \cap \mathsf{Reach}(A) = \emptyset$$

Exercise

Reachability and Safety

00000

Give an algorithm to check a safety property.

Observations

Is use after free a safety property?

Reachability and Safety

00000

```
malloc
void foo() {
   int x, a;
   int *p = malloc(sizeof(int));
   for (x = 10; x > 0; x--) {
      a = *p;
      if (x \le 1) {
                                                    use
         free(p);
                                             \ell_5
                   free
                               use
                                               free
                                     Bad
             OK
                         Free
```

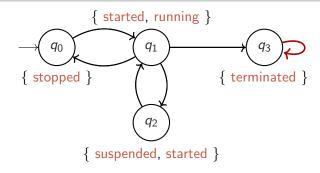
Kripke Structures

Definition

Reachability and Safety

00000

A *labelled automaton* is a FA $(Q, q_0, \Sigma, \delta, F, L)$ with an additional labelling function $L: Q \to 2^{\mathcal{P}}$, where \mathcal{P} is our atomic propositions. A *Kripke structure* is a type of labelled automaton where $|\Sigma| = 1$, F = Q. Equivalently, we don't have a notion of actions or final states, and $\delta: Q \to 2^Q$. We also require that for any $q, \delta(q) \neq \emptyset$.



Traces

Definition

A *trace*, also called a *behaviour*, is the sequence of labels corresponding to a run. For Kripke structures it is necessarily infinite in length.

Define Traces(A) to be all possible infinite traces from q_0 in A.

Definition

A linear time *property* is a set of traces, i.e. a subset of $(2^{\mathcal{P}})^{\omega}$. We say a Kripke structure A satisfies a property P iff:

$$\mathsf{Traces}(A) \subseteq P$$

LTL

Linear temporal logic (LTL) is a logic designed to describe linear time properties.

Linear temporal logic syntax

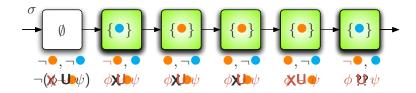
We have normal propositional operators:

- $p \in \mathcal{P}$ is an LTL formula.
- If φ, ψ are LTL formulae, then $\varphi \wedge \psi$ is an LTL formula.
- If φ is an LTL formula, $\neg \varphi$ is an LTL formula.

We also have modal or temporal operators:

- If φ is an LTL formula, then **X** φ is an LTL formula.
- If φ , ψ are LTL formulae, then φ UNTIL ψ is an LTL formula.

LTL Semantics in Pictures



LTL Semantics

Let $\sigma = \sigma_0 \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \dots$ be a trace. Then define notation:

- $\bullet \ \sigma|_0 = \sigma$
- $\bullet \ \sigma|_1 = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \dots$
- $\sigma|_{n+1} = (\sigma|_1)|_n$

Semantics

The models of LTL are traces. For atomic propositions, we just look at the first state:

We say $A \models \varphi$ iff $\forall \sigma \in \mathsf{Traces}(A)$. $\sigma \models \varphi$.

The operator $\mathbf{F} \varphi$ ("finally" or "eventually") says that φ will be true at some point.

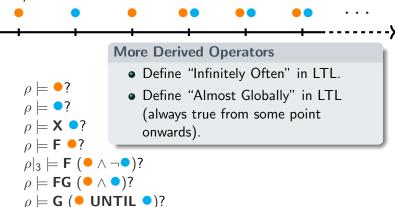
The operator **G** φ ("globally" or "always") says that φ is always true.

Exercise

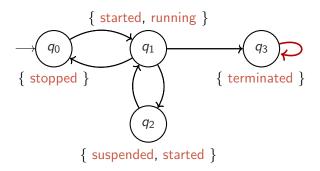
- Give the semantics of F and G.
- Define F and G in terms of other operators.

More Exercises

Let ρ be this trace:



Possible Futures



We can see that it is always possible for a run to move to the terminated state. How do we express this in LTL? We can't! — it is a *branching time* property.

Branching Time

Definition

The *computation tree* of a Kripke structure A, written Tree(A), is an infinite tree of Kripke structure states, where q_0 is the root and a state q' is a child of q if $q' \in \delta(q)$.

A path $t_1t_2t_3...$ is a (infinite) sequence of computation trees such that t_{n+1} is the child of t_n . Define Paths(t) to be the set of all paths starting at t.

Exercise

Draw the CT for the process example.

CTL* Syntax

Definition

We define two types of formulae, state formulae and path formulae, named based on their models.

A state formula (SF) is defined as follows:

- All $p \in \mathcal{P}$ are SFs.
- Given SFs P and Q, $\neg P$ is a SF and $P \land Q$ is a SF.
- Given a PF φ , $\mathbf{E}\varphi$ and $\mathbf{A}\varphi$ are SFs.

A path formula (PF) is defined much like LTL:

- If P is a SF, then P is a PF.
- Given PFs φ and ψ , $\neg \varphi$ is a PF and $\varphi \wedge \psi$ is a PF.
- Given a PF φ then $\mathbf{X}\varphi$ is a PF.
- Given PFs φ and ψ , φ **UNTIL** ψ is a PF.

Initially, we start with state formulae (SFs).

CTL* Semantics

State Semantics

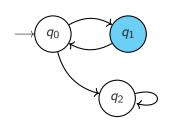
$$\begin{array}{lll} t \models p & \Leftrightarrow & p \in L(t_{\mathsf{root}}) \\ t \models P \land Q & \Leftrightarrow & t \models P \text{ and } t \models Q \\ t \models \neg P & \Leftrightarrow & t \not\models P \\ t \models \mathbf{E} \varphi & \Leftrightarrow & \exists \rho \in \mathsf{Paths}(t). \ \rho \models \varphi \\ t \models \mathbf{A} \varphi & \Leftrightarrow & \forall \rho \in \mathsf{Paths}(t). \ \rho \models \varphi \end{array}$$

Path Semantics

$$\begin{array}{lll} \rho \models P & \Leftrightarrow & \rho_0 \models P \\ \rho \models \varphi \wedge \psi & \Leftrightarrow & \rho \models \varphi \text{ and } \rho \models \psi \\ \rho \models \neg \varphi & \Leftrightarrow & \rho \not\models \varphi \\ \rho \models \mathbf{X} \ \varphi & \Leftrightarrow & \rho|_1 \models \varphi \\ \rho \models \varphi \ \mathbf{UNTIL} \ \psi & \Leftrightarrow & \text{There exists an } i \text{ such that } \rho|_i \models \psi \\ & & \text{and for all } j < i, \ \rho|_j \models \varphi \end{array}$$

CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is, $A \models P \text{ iff Tree}(A) \models P$ Given this automaton A:



• $A \models \mathbf{E} \mathbf{G} \mathbf{F} = ?$

000

- $A \models A G F = ?$
- $A \models A \models ?$
- $A \models A \models F = ?$

Simplifying

CTL* is very expressive but very complicated.

It's also extremely hard to model check, which we'll get to later.

CTL* to CTL

Keep state formulae the same:

- All $p \in \mathcal{P}$ are SFs.
- Given SFs P and Q, $\neg P$ is a SF and $P \land Q$ is a SF.
- Given a PF φ , **E** φ and **A** φ are SFs.

But we force path formulae to go straight back to state formulae immediately with a temporal operator:

- Given a SF P then XP is a PF.
- Given SFs P and Q, P UNTIL Q is a PF.

Examples

Which of the following CTL* formulae are CTL formulae?

- a UNTIL (b UNTIL c)
- A (a UNTIL c)
- X X a
- X A a
- A (a UNTIL (b UNTIL c))
- A E (a UNTIL b)
- E X a
- X E a

Non-mutual CTL Syntax

Simpler CTL Syntax

A CTI formula is defined as follows:

- All $p \in \mathcal{P}$ are formulae.
- Given formulae P and Q, $\neg P$ is a formula and $P \wedge Q$ is a formula.
- Given a formula P, **EX** P and **AX** P are formulae.
- Given formulae P and Q, E(P UNTIL Q) and A(P UNTIL Q) are formulae.

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

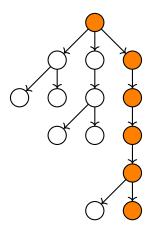
Semantics

```
\Leftrightarrow p \in L(t_{root})
t \models p
t \models P \land Q
                                              \Leftrightarrow t \models P and t \models Q
t \models \neg P
                                              \Leftrightarrow t \not\models P
                                              \Leftrightarrow \exists \rho \in \mathsf{Paths}(t). \ \rho_1 \models P
t \models \mathbf{EX} P
t \models AX P
                                              \Leftrightarrow \forall \rho \in \mathsf{Paths}(t). \ \rho_1 \models P
t \models A(P \text{ UNTIL } Q)
                                             \Leftrightarrow \forall \rho \in \mathsf{Paths}(t), there \exists an i such that:
                                                           \rho_i \models Q and \forall i < i. \ \rho_i \models P
                                            \Leftrightarrow \exists \rho \in \mathsf{Paths}(t) and an i such that:
t \models \mathbf{E}(P \ \mathbf{UNTIL} \ Q)
                                                            \rho_i \models Q and \forall i < i. \ \rho_i \models P
```

Define **EF**:

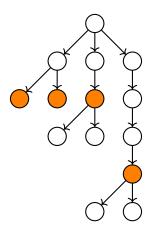
E(True **UNTIL** ●)

Define **EG**:



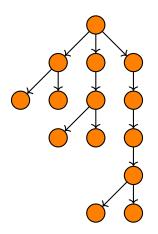
 $\neg A(True\ UNTIL\ \neg \bullet)$

Define **AF**:



A(True **UNTIL** ●)

Define AG :



Bibliography

- Huth/Ryan: Logic in Computer Science, Section 3.2 and 3.4
- Bayer/Katoen: Principles of Model Checking Sections 5.1 and 6.2